Smoothed Spatial Maximum Score Estimation of Spatial Autoregressive Binary Choice Panel Models

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of spatial autoregressive panel data models with fixed effects

This paper establishes asymptotic properties of quasi-maximum likelihood estimators for SAR panel data models with fixed effects and SAR disturbances. A direct approach is to estimate all the parameters including the fixed effects. Because of the incidental parameter problem, some parameter estimatorsmay be inconsistent or their distributions are not properly centered. We propose an alternative...

متن کامل

Generalized Maximum Entropy Estimation of Spatial Autoregressive Models

We formulate generalized maximum entropy estimators for the general linear model and the censored regression model when there is first order spatial autoregression in the dependent variable and residuals. Monte Carlo experiments are provided to compare the performance of spatial entropy estimators in small and medium sized samples relative to classical estimators. Finally, the estimators are ap...

متن کامل

Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model

‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...

متن کامل

A Smoothed Maximum Score Estimator for Multinomial Discrete Choice Models

We propose a semiparametric estimator for multinomial discrete choice models. The term “semiparametric” refers to the fact that we do not specify a particular functional form for the error term in the random utility function and we allow for heteroskedasticity and serial correlation. Despite being semiparametric, the rate of convergence of the smoothed maximum score estimator is not affected by...

متن کامل

Aggregation Bias in Maximum Likelihood Estimation of Spatial Autoregressive Processes

In statistical models of spatial behavior, there is often a mismatch between the scale at which data is available and the scale at which key spatial dependencies are known to occur. However, in attempting to incorporate Þner grain information about spatial dependencies, certain estimation problems arise. Here it is shown that maximum likelihood procedures can produce signiÞcantly negative estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2013

ISSN: 1556-5068

DOI: 10.2139/ssrn.2351217